Suppressors of a U4 snRNA mutation define a novel U6 snRNP protein with RNA-binding motifs.

نویسندگان

  • K W Shannon
  • C Guthrie
چکیده

U4 and U6 small nuclear RNAs are associated by an extensive base-pairing interaction that must be disrupted and reformed with each round of splicing. U4 mutations within the U4/U6 interaction domain destabilize the complex in vitro and cause a cold-sensitive phenotype in vivo. Restabilization of the U4/U6 helix by dominant (gain-of-function), compensatory mutations in U6 results in wild-type growth. Cold-insensitive growth can also be restored by two classes of recessive (loss-of-function) suppressors: (1) mutations in PRP24, which we show to be a U6-specific binding protein of the RNP-consensus family; and (2) mutations in U6, which lie outside the interaction domain and identify putative PRP24-binding sites. Destabilization of the U4/U6 helix causes the accumulation of a PRP24/U4/U6 complex, which is undetectable in wild-type cells. The loss-of-function suppressor mutations inhibit the binding of PRP24 to U6, and thus presumably promote the release of PRP24 from the PRP24/U4/U6 complex and the reformation of the base-paired U4/U6 snRNP. We propose that the PRP24/U4/U6 complex is normally a highly transient intermediate in the spliceosome cycle and that PRP24 promotes the reannealing of U6 with U4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical, clustered protein interactions with U4/U6 snRNA: a biochemical role for U4/U6 proteins.

During activation of the spliceosome, the U4/U6 snRNA duplex is dissociated, releasing U6 for subsequent base pairing with U2 snRNA. Proteins that directly bind the U4/U6 interaction domain potentially could mediate these structural changes. We thus investigated binding of the human U4/U6-specific proteins, 15.5K, 61K and the 20/60/90K protein complex, to U4/U6 snRNA in vitro. We demonstrate th...

متن کامل

A composite double-/single-stranded RNA-binding region in protein Prp3 supports tri-snRNP stability and splicing

Prp3 is an essential U4/U6 di-snRNP-associated protein whose functions and molecular mechanisms in pre-mRNA splicing are presently poorly understood. We show by structural and biochemical analyses that Prp3 contains a bipartite U4/U6 di-snRNA-binding region comprising an expanded ferredoxin-like fold, which recognizes a 3'-overhang of U6 snRNA, and a preceding peptide, which binds U4/U6 stem II...

متن کامل

Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase.

The Brr2 RNA helicase disrupts the U4/U6 di-small nuclear RNA-protein complex (di-snRNP) during spliceosome activation via ATP-driven translocation on the U4 snRNA strand. However, it is unclear how bound proteins influence U4/U6 unwinding, which regions of the U4/U6 duplex the helicase actively unwinds, and whether U4/U6 components are released as individual molecules or as subcomplexes. Here,...

متن کامل

Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA.

Activation of the spliceosome for splicing catalysis requires the dissociation of U4 snRNA from the U4/U6 snRNA duplex prior to the first step of splicing. We characterize an evolutionarily conserved 15.5 kDa protein of the HeLa [U4/U6.U5] tri-snRNP that binds directly to the 5' stem-loop of U4 snRNA. This protein shares a novel RNA recognition motif with several RNP-associated proteins, which ...

متن کامل

U4 snRNA nucleolar localization requires the NHPX/15.5-kD protein binding site but not Sm protein or U6 snRNA association

All small nuclear RNAs (snRNAs) of the [U4/U6.U5] tri-snRNP localize transiently to nucleoli, as visualized by microscopy after injection of fluorescein-labeled transcripts into Xenopus laevis oocyte nuclei. Here, we demonstrate that these RNAs traffic to nucleoli independently of one another, because U4 snRNA deleted in the U6 base-pairing region still localizes to nucleoli. Furthermore, deple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genes & development

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 1991